skip to main content


Search for: All records

Creators/Authors contains: "Erten, Onur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the phase diagram of a bilayer Kitaev honeycomb model with Ising interlayer interactions, deriving effective models via perturbation theory and performing Majorana mean-field theory calculations. We show that a diverse array of magnetic and topological phase transitions occur, depending on the direction of the interlayer Ising interaction and the relative sign of Kitaev interactions. When two layers have the same sign of the Kitaev interaction, a first-order transition from a Kitaev spin liquid to a magnetically ordered state takes place. The magnetic order points along the Ising axis and it is (anti)ferromagnetic for (anti)ferromagnetic Kitaev interactions. However, when two layers have opposite signs of the Kitaev interaction, we observe a notable weakening of magnetic ordering tendencies and the Kitaev spin liquid survives up to a remarkably larger interlayer exchange. Our mean-field analysis suggests the emergence of an intermediate gapped Z2 spin-liquid state, which eventually becomes unstable upon vison condensation. The confined phase is described by a highly frustrated 120∘ compass model. We furthermore use perturbation theory to study the model with the Ising axis pointing along the z axis or lying in the xy plane. In both cases, our analysis reveals the formation of one-dimensional Ising chains, which remain decoupled in perturbation theory, resulting in a subextensive ground-state degeneracy. Our results highlight the interplay between topological order and magnetic ordering tendencies in bilayer quantum spin liquids. 
    more » « less
    Free, publicly-accessible full text available January 30, 2025
  2. Motivated by the recent developments in moiré superlattices of van der Waals magnets and the desire to control the magnetic interactions of α-RuCl3, here we present a comprehensive theory of the long-range ordered magnetic phases of twisted bilayer α-RuCl3. Using a combination of first-principles calculations and atomistic simulations, we show that the stacking-dependent interlayer exchange gives rise to an array of magnetic phases that can be realized by controlling the twist angle. In particular, we discover a complex hexagonal domain structure in which multiple zigzag orders coexist. This multidomain order minimizes the interlayer energy while enduring the energy cost due to domain wall formation. Further, we show that quantum fluctuations can be enhanced across the phase transitions. Our results indicate that magnetic frustration due to stacking-dependent interlayer exchange in moiré superlattices can be exploited to tune quantum fluctuations and the magnetic ground state of α-RuCl3. 
    more » « less
    Free, publicly-accessible full text available January 10, 2025
  3. We study the phase diagram of the Yao-Lee model with Kitaev-type spin-orbital interactions in the presence of Dzyaloshinskii-Moriya interactions and external magnetic fields. Unlike the Kitaev model, the Yao-Lee model can still be solved exactly under these perturbations due to the enlarged local Hilbert space. Through a variational analysis, we obtain a rich ground-state phase diagram that consists of a variety of vison crystals with periodic arrangements of background Z2 flux (i.e., visons). With an out-of-plane magnetic field, these phases have gapped bulk and chiral edge states, characterized by a Chern number ν and an associated chiral central charge c=ν/2 of edge states. We also find helical Majorana edge states that are protected by magnetic mirror symmetry. For the bilayer systems, we find that interlayer coupling can also stabilize new topological phases. Our results spotlight the tunability and the accompanying rich physics in exactly solvable spin-orbital generalizations of the Kitaev model. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Abstract

    We determine the phase diagram of a bilayer, Yao-Lee spin-orbital model with inter-layer interactions (J), for several stackings and moiré superlattices. For AA stacking, a gapped$${{\mathbb{Z}}}_{2}$$Z2quantum spin liquid phase emerges at a finiteJc. We show that this phase survives in the well-controlled large-Jlimit, where an isotropic honeycomb toric code emerges. For moiré superlattices, a finite-qinter-layer hybridization is stabilized. This connects inequivalent Dirac points, effectively ‘untwisting’ the system. Our study thus provides insight into the spin-liquid phases of bilayer spin-orbital Kitaev materials.

     
    more » « less
  6. Abstract

    The surface states of 3D topological insulators in general have negligible quantum oscillations (QOs) when the chemical potential is tuned to the Dirac points. In contrast, we find that topological Kondo insulators (TKIs) can support surface states with an arbitrarily large Fermi surface (FS) when the chemical potential is pinned to the Dirac point. We illustrate that these FSs give rise to finite-frequency QOs, which can become comparable to the extremal area of the unhybridized bulk bands. We show that this occurs when the crystal symmetry is lowered from cubic to tetragonal in a minimal two-orbital model. We label such surface modes as ‘shadow surface states’. Moreover, we show that the sufficient next-nearest neighbor out-of-plane hybridization leading to shadow surface states can be self-consistently stabilized for tetragonal TKIs. Consequently, shadow surface states provide an important example of high-frequency QOs beyond the context of cubic TKIs.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)